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Abstract—As a key component of building management and
security, occupancy inference through smart sensing has attracted
a lot of research attentions for nearly two decades. Nevertheless,
existing solutions mostly rely on either pre-deployed infrastruc-
tures or user device participation, thus hampering their wide
adoption. This paper presents CeilingSee, a dedicated occupancy
inference system free of heavy infrastructure deployments and
user involvements. Building upon existing LED lighting systems,
CeilingSee converts part of the ceiling-mounted LED luminaires
to act as sensors, sensing the variances in diffuse reflection
caused by occupants. In realizing CeilingSee, we first re-design
the LED driver to leverage LED’s photoelectric effect so as to
transform a light emitter to a light sensor. In order to produce
accurate occupancy inference, we then engineer efficient learning
algorithms to fuse sensing information gathered by multiple LED
luminaires. We build a testbed covering a 30m2 office area;
extensive experiments show that CeilingSee is able to achieve
very high accuracy in occupancy inference.

I. INTRODUCTION

The awareness of (indoor) occupancy is crucial to many
aspects of smart building management; these include, among
others, controlling the HVAC (Heating, Ventilation, and Air
Conditioning) and lighting systems for the sake of energy
conservation, choosing the right information service based on
congestion level, as well as safely evacuating people under
life-threatening circumstances. In the past two decades, various
smart sensing technologies have been dedicated1 to infer
occupancy for indoor facilities, and most of them require
deploying certain sensing infrastructure with mainly three
typical sensors: passive infra-red (PIR) [5], [6], [7], [8],
acoustic/ultrasonic [9], [10], [11], and camera [12], [13], [14],
[8]. Other solutions attempt to infer occupancy indirectly by
monitoring the usage of existing services (e.g., Wi-Fi [15]
and power grid [16]). Whereas the former method requires
installations of extra infrastructure and hence incurs both high
cost for building management and potential infringement of
user privacy, the latter approach can hardly be accurate: what
if some occupants simply do not use any services?

Our key observation is that, in any human occupied indoor
spaces, lighting is a necessity while the resulting diffuse
reflection can be “perturbed” by the presence of occupants. At
the meantime, Visible Light Sensing (VLS), as a variance of

1Though occupancy information can be derived from an indoor localization
system (e.g., [1], [2], [3], [4]), few practical indoor localization systems have
been widely adopted so far. Moreover, relying on user location tracking to
“count” occupancy is highly inefficient and may infringe privacy.

(a) Sensing coverage of LED array. (b) Occupant under the coverage.
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(c) Variances in LED readings due to absence/presence of occupant.

Fig. 1. Inferring occupancy by LED sensing.

heavily studied Visible Light Communication (VLC) [18], [19],
[20], [21], has started to show its potential in many sensing-
intensive applications [2], [22]. Therefore, a natural question
is: can we apply VLS to build an occupancy inference system
that is free of reliance on both heavy infrastructures and user
involvements? In this paper, we intend to provide readers with
a positive answer through our CeilingSee system.

The first idea of CeilingSee is very intuitive: from the ceiling
point of view, the diffuse reflection (consisting of mainly
reflections from the floor and various fixed furnitures on the
floor) is bounded to be affected by the presence of occupants.
Therefore, sensing such perturbations could allow us to infer
occupancy. While simply installing an array of light sensors on
the ceiling could be a solution, it would introduce yet another
infrastructure. Fortunately, the increasing popularity of LED
lighting systems and the readily verifiable photoelectric effect
of LED [23], [19] have motivated our novel idea: re-designing
the driver of a Commercial Off-The-Shelf (COTS) LED could
enable it to serve as both a light emitter and a light sensor.
Consequently, CeilingSee simply leverages the existing LED
lighting systems and borrows a fraction of LED chips to sense
the variance in diffuse reflection. We illustrate these ideas in
Fig. 1; it clearly demonstrates the potential and effectiveness
of VLS-based occupancy inference.



TABLE I
COMPARING CEILINGSEE WITH EXISTING SOLUTIONS FOR OCCUPANCY INFERENCE.

Sensor Type Infrastructure reuse Privacy Concern Accuracy Cost Limitation
Ultrasonic [11] No No ≥ 90% Medium Need prior maximum and distribution of occupants

Thermal Sensor & PIR [7] No No 88.5% Medium Extra sensors
Camera [13] Possible Yes 80% High Heavy computation, re-calibration based on dimming

Camera & PIR [8] Partial Yes 94% High Heavy computation, re-calibration based on dimming
Photosensors [17] No No N/A Low Extra sensor, re-calibration based on dimming
LED (CeilingSee) Yes No ≥ 90% Low Re-calibration based on dimming

The seemingly straightforward ideas of CelingSee impose
on us two major challenges. Firstly, although conventional
LED-to-LED communication [19] has already employed an
LED as receiver (a special form of sensor), sensing the
variance in diffuse reflection is much more challenging due
to the very low SNR, hence it necessitates using the collective
sensing ability of multiple LED chips. Existing LED receiver
directly connects an LED chip to the I/O port of an MCU, thus
relying on the controllable nature of the I/O port to toggle
the states of the LED between forward biased (emitting or
sending) and reverse biased (sensing or receiving). Unfortu-
nately, this would not work when multiple LED chips are used
together, as the voltage/current would exceed what an I/O
can take (normally no more than 3.3V/20mA). As a result,
we design a novel circuit for accommodating the collective
photoelectric effects of an LED array.

Secondly, as the sensing coverage (a.k.a., Field of View,
or FoV)) of a single LED array (consisting of multiple
“sensorized” LED chips) is limited, we have to use multiple
arrays to cover a large indoor area, which happens to be
in line with the lighting requirement. Moreover, CeilingSee
needs to account for multiple occupants dispersed on the
area, especially those not strictly under of an LED array.
Therefore, it is necessary that efficient inference algorithms are
in place to utilize the collective sensing outcomes of all LED
arrays. CeilingSee responds to this challenge by engineering
a machine learning algorithm that maps the multi-dimensional
sensing data to the demanded occupancy count.

To validate our design of CeilingSee, we build a testbed
consisting of multiple LED arrays in order to cover a 30m2

office area. We implement the hardware part for controlling
the LED arrays, as well as the software part for sensing
data processing and hence occupancy inference. Our main
contributions are as follows:
• We propose the novel idea of applying ceiling-mounted

LED lighting systems for inferring occupancy, and we
build CeilingSee to showcase the efficiency and effective-
ness of this lightweight occupancy inference approach.

• We re-design the driver of an COTS LED so that Ceil-
ingSee can freely toggle an LED between light emitting
and light sensing modes and a group of LEDs can be
collectively used for sensing the variance in (indoor)
diffuse reflection.

• We engineer data processing and machine learning al-
gorithms to deduce the occupancy within the FoV of an
LED array, and to infer full area occupancy by fusing the
multi-dimensional sensing outcomes from all arrays.

• We conduct extensive field experiments in the past six
months to validate the effectiveness of CeilingSee, and
the results strongly demonstrate its high accuracy in
occupancy inference.

We are not expecting CeilingSee to fully replace the existing
occupancy inference solutions. Instead, we deem the technical
implication of CeilingSee as twofold: i) it is an avatar of
a VLS-based idea that minizes the resource required for
inferring occupancy and may thus inspire other applications
of VLS, and ii) it serves as a complement to other solutions
for improving the efficiency and scalability of occupancy infer-
ence systems. We comparing CeilingSee with typical existing
solutions in Table I. As CeilingSee and an existing solution
adopting photosensors [17] are both of low cost, we further
compare their costs in Table II. In the following, we first
introduce the principle of LED sensing, along with the design
and experience with a single sensing unit of CeilingSee in
Sec. II. Then we present our learning-based occupant inference
algorithms in Sec. III. We report the performance evaluation
of CeilingSee in Sec. IV and conclude the paper in Sec. V.

II. SENSING REFLECTION BY LED

Lighting systems are pervasively deployed and used for
indoor spaces due to the inadequate natural lighting from
windows, especially when the space has limited access to
day light. Such lighting systems are normally ceiling-mounted
and hence cause diffuse reflections from the floor (including
various furniture on it), which is biased towards the ceiling due
to the blending with minor specular reflection. When (human)
occupants move into this “reflection field”, they can cause
perturbations readily sensible by certain ceiling-mounted light
sensors. To avoid introducing an extra sensing infrastructure,
our idea is to re-use part of the existing LED lighting system
to serve the sensing function.

It is well known that LED has photoelectric effect, i.e.,
light shining upon an LED can cause it to emit electrons,
which is a reverse effect of LED’s default functionality [24].

TABLE II
COST COMPARISON OF CEILINGSEE WITH PHOTOSENSOR SOLUTION [17].

CeilingSee Photosensor[17]
Components Cost Components Cost

Switches $2.76 Photosensors (TEPT5600) $0.7
Amplifiers $0.37 Amplifiers $3.28

MCU (CC2541) $4.34 MCU (MSP432) $7.89
Other passives $4.04 Other passives ≥$5.4

Total $11.51 Total ≥$17.27



(a) (b) (c)

Fig. 2. Conventional bidirectional interface between LED and MCU. (a)
Normal I/O configuration for light emitting. (b) Reverse bias for light sensing.
(c) I/O as input for reading sensed signal.

This effect has motivated a few proposals to use an LED not
only as a sender but also as a receiver in VLC [23], [19].
However, converting an LED receiver to an LED sensor is
almost impossible as the light signal sent by an LED has a
much higher Signal-to-Noise-Ratio (SNR) than the variance
in reflection. Moreover, as we only “borrow” part of the LED
lighting system for the sensing purpose, we want to toggle
the LEDs between light emitting and light sensing modes
when either is in need. Therefore, we present the details of
CeilingSee’s hardware implementation in this section, aiming
to address the aforementioned issues.

A. From LED Receiving to LED Sensing

We briefly describe the conventional design of an LED
receiver, and then we explain why and how the design of LED
sensing for CeilingSee should be different.

1) Bidirectional Setting of LED Receiver: In a conventional
design for light receiving in the LED-LED communication, a
bidirectional interface to an LED is created by connecting the
LED directly between the two I/O pins of a micro-controller
(MCU) [23], as shown in Fig. 2. Fig. 2(a) shows that the LED
emits lighting when its anode and cathode are connected to
VCC and GND, respectively, via a simple I/O configuration.
Reverting the I/O configuration sets the LED in reverse bias
mode as in Fig. 2(b); it charges the inner stray capacitance
of the LED and prepares the LED for light sensing. Fig. 2(c)
further illustrates the actual measurement phase: MCU reads
the voltage changes on LED’s cathode and times how long
it takes for the photocurrent to discharge the capacitance
to the I/O pin’s digital input threshold, as the discharging
time is inversely proportional to the amount of incident light.
The simplicity of this LED receiving circuit stems from the
matching voltages between an MCU and an LED, which does
not work if one wishes to drive more LEDs with one MCU.

2) Collective Sensing with Multiple LEDs: Compared with
the LED-LED communication, the signal for our reflection
sensing scenario is much weaker.2 As a result, if we used the
same circuit as described in Section II-A1, we would either
fail to sense the signal due to the too weak photocurrent or
experience a huge sensing delay thanks to the long discharging
time. Whereas using multiple LEDs to collectively sense the

2The signal could also be weaker in LED-LED communication if the trans-
mission distance goes beyond the centimeter testing scenarios in [23], [19].
As a practical sensing system, CeilingSee has to work under a “transmission
distance” (that from floor to ceiling) of several meters.

(a)

(b) (c) (d)

(e)

Fig. 3. Architecture of the LED array driver. (a) Circuit schematic. (b)
The equivalent circuit during light emitting. (c) The equivalent circuit for
discharging. (d) The equivalent circuit during light sensing. (d) Duty-cycled
control signal sequence for toggling between lighting and sensing.

weak signal appears to be a straightforward solution, the much
higher voltage level caused by aggregating multiple LEDs
renders the existing I/O-based circuit design invalid. Also,
reverse biasing an array of LED is almost impossible for a
normal MCU with limited absolute maximum voltage.3

Therefore, our intention is to use an LED array as one light
sensing unit without the need for reverse biasing it. According
to the LED’s equivalent circuit model [23], an LED can be
deemed as a current source with a shunt capacitor, while the
current source is driven by incident light to generate tiny
photocurrent. Whereas the current produced by one LED is
too weak to be measurable (even through an amplifier), the
aggregated current of the LED array (with a sufficient amount
of LEDs) would suffice for the sensing purpose.

Based on the aforementioned ideas, we re-design the driver
of COTS LED luminaires to control the LED state toggling, so
that CeilingSee can duty-cycle part of the luminaire between
light emitting (for normal lighting) and light sensing (for
occupancy inference). Fig. 3 shows the architecture of this
driver circuit and also its functionalities under different modes.
The five switches in Fig. 3(a) are key components for the
driver. The LED array emits light (lighting phase) if both S1
and S2 are ON and other switches are OFF, as shown by

3Though this could be made possible by using special high-power compo-
nents, e.g. high reverse voltage MOSFET, the high cost would compromise
our purpose of building a lightweight occupancy inference system.



Fig. 3(b). Subsequently, Fig. 3(c) shows a short discharging
window that allows residual charges on the array to be cleared
for preparing sensing (discharging phase), by putting S3 ON
while others OFF. Finally, switching S4 and S5 ON and
others OFF enables the array to act as a light sensor (sensing
phase): the resistor Rs (> 10MΩ) converts weak photocurrents
to voltage signals that drive amplifiers to produce sensing
outcome. We also show the duty-cycled control sequence of
different switches in Fig. 3(e): to prevent short circuit, a dead-
time should be inserted between two consecutive phases.

B. Experiencing Single Sensing Unit

Fig. 4 shows one sensing unit of CeilingSee; it consists of an
8×12 LED chip array [25] and a PCB carrying our re-designed
driver. We separate the chips into two groups and duty-cycle
them in a complementary manner to perform both lighting and
sensing simultaneously while avoiding flickering. Currently,
we toggle them at a long switching period (every 10 minutes)
between lighting and sensing. Using this hardware platform,
we first test the capability of single-unit occupancy inference,
aiming to study the performance of such a unit under various
parameter settings and situations. More hardware implemen-
tation details on the unit will be given in Section IV-A.

(a) Sensing/lighting uint (b) Re-designed driver

Fig. 4. A sensing/lighting unit of CeilingSee, consisting of a LED array and
a re-designed driver.

1) Raw Reading and Signal Smoothing: We first demon-
strate the effectiveness of using LED sensing to indicate
occupancy: we record VADC when one occupant walks into the
sensing coverage and stay there, and the VADC in Fig. 5 clearly
shows the variance in reflection incurred by an occupant.
The rather unstable raw readings are mainly interfered by
two sources: a minor random noise and a 50Hz component.4

Both interferences are very easy to be removed by applying a
moving average with a window size of 100ms. Therefore, we
report only the smoothed readings hereafter. Also, we take the
absolute difference between a VADC reading and the nominal
reading (obtained in absence of any occupants, when we train
or re-train CeilingSee) as the actual sensing value.

2) Impacts of Illuminance and Dimension: As a sensing
unit is sensing the reflection, the outcome ought to be affected
by the ambient illuminance. Also, according to Section II-A2,

4As we deploy CeilingSee in a public research lab, the LED sensing units
have to be co-located with existing fluorescent lights that cause the 50Hz
component. This happens to attest the compatibility of CeilingSee with legacy
lighting systems.
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Fig. 5. Raw and smoothed ADC readings (VADC) that indicate reflection
variance due to occupancy.

the sensitivity of the unit depends on the number of LED
chips involved. We are here to quantitatively understand these
impacts. Fig. 6(a) shows the sensing values are significantly
affected by (average) illuminance, and an illuminance lower
than 60lux would affect the performance of CeilingSee. For-
tunately, normal office area has a light level of 200lux and
other public facilities such as supermarkets or theaters can
reach 1000lux [26]. In the following, we maintain the average
illuminance to 150lux: the one offered by the laboratory where
CeilingSee is deployed. In Fig. 6(b), we vary the number of
chips and check the resulting sensitivity. The results show that
the unit with 96 chips appears to be the most cost-effective
choice, hence leading to our design in Fig. 4.
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(a) Sensing value vs. illuminance
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(b) Sensing vs. LED chips number.

Fig. 6. Impact of ambient illuminance and chip number on sensitivity.

3) Occupant Position and Number: In the previous exper-
iments, we put an occupant right below a sensing unit. Now
we let the occupant gradually move away from that center
point, and record the corresponding sensing values in Fig. 7(a).
Interestingly, whereas the values are generally decreasing in
distance, it has a peak at 0.5m. This stems from the fact that
the perturbation in reflection incurred by the occupant depends
on not only the distance but also occupant’s cross section
with respect to the unit; the tradeoff between these conflicting
factors naturally leads to the peak. This is a nice property as
it can effectively increase the FoV of one sensing unit.

We also vary the number of occupants that stand within a
circle of radius 1m around the unit. Fig. 7(b) shows an almost
linear increase in sensing values with the occupant number,
though with some saturation at 4 occupants. Normally, we
do not expect to have so crowded situations where more
than 4 people stand upon a roughly 3m2 area, so the results
demonstrate the ability of a single unit to count the number
of occupants within its FoV, and also explain the need for
cooperative sensing with multiple units.
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(a) Sensing values vs. distance
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(b) Sensing values vs. occupancy

Fig. 7. Changes in sensing value caused by the occupant position and number.

4) Postures and Gestures of an Occupant: An occupant
may have different postures and we consider three typical
ones: standing, seating, and squatting (rare). We study the
impact of these postures on the sensing values when the
occupant is at various distances from a sensing unit. Fig. 8(a)
shows that, though squatting does lead to rather low sensing
values, standing and sitting cause very close sensing values.
This is explained by the fact that the sensing value incurred by
the occupant depends on occupant’s cross section. So certain
occupants may “hide” from CeilingSee by squatting, but this
is such a rare posture indoors that it would not cause much
trouble to the overall inference performance. An occupant may
also change gestures without leaving the monitored area, and
such interference should not be responded by CeilingSee. In
Fig. 8(b), we show that CeilingSee is virtually insensitive to
gesture changes (e.g., waving arms) of an occupant, implying
that the occupancy inference function is robust against such
an interference. Due to page limit, we omit the demonstrations
on robustness against the color and height of an occupant, as
well as ambient light variance.
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(a) Effect of occupants’ postures
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(b) Effect of occupants’ gesture

Fig. 8. Changes in sensing value caused by different postures and gestures.

III. OCCUPANCY INFERENCE

As illustrated in Fig. 9, the LED sensing readings are first
smoothed and sampled to obtain vectors of sensing values
(termed snapshots hereafter) as described in Section II-B. The
snapshots are either directly taken or further differentiated to
extract temporal features, and these inputs are fed to a fine-
tuned regression module trained for occupancy inference.

A. Spatial Distribution of Sensing Values

When multiple occupants exist in an area monitored by
CeilingSee, each sensing unit will produce a sensing value

Sensing 
Unit

Sensing 
Unit

Signal Processing

Feature Extraction

Spatial-Temporal 
Correlated 
Regression

Occupancy

MCU

Driver

LED Array

Fig. 9. System architecture. CeilingSee gathers data from all sensing units,
pre-processes them to remove noise, and then passes them to the regression
module for inferring occupancy.

depending on the spatial distribution of the occupants around
it (as studied in Section II-B). We denote the sensing value
of a unit by x`(t), where ` is the index of the unit and t
is the time instant when the value is sampled. Combining
all the values produced by the whole system, we end up
with a time-varying vector x(t) = [x1(t), x2(t), · · · , xn(t)],
where n is the number of sensing units. As we always sample
x(t) in a discrete manner, we actually use xi to denote a
snapshot at the i-th time slot, and the spatial distribution
of the individual components of a xi is correlated with
that of the occupants during that time slot. We illustrate a
few typical snapshots using our deployment in Fig. 11 of
Section IV-A. In Fig. 10, we show 8 snapshots captured
when there are 4, 8, 12 occupants and each with two spatial
distribution patterns, namely all standing under the sensing
units and away from them. A direct observation is that, in
general, more occupants usually yield higher overall sensing
values and a higher sensing value indicates more occupants
around that unit. These observations agree with impact of
distance/occupant number on sensing value shown in Fig. 7.
More detailed inspections show that, with the same number
of occupants at different positions, locating occupants right
below the LED sensing units actually leads to lower overall
sensing values than moving them away from the units. This
stems from our finding in Fig. 7(a). Nevertheless, directly
inferring occupancy from individual snapshots through linear
regression may yield rather coarse-grained estimations with a
low accuracy.

B. Regularized Regression

Given a training set D = {xi, yi}i=1,··· ,m where xi ∈ Rn
denotes the input snapshots, yi ∈ R is the corresponding label
(i.e. the occupant count), and m is the cardinality of (sensory)
data-label pairs, we need to find a function f(x) : Rn → R in
the form of f(x) = 〈w,x〉+ b to fit the relationship between
{xi}’s and {yi}’s, where w ∈ Rn is the vector of weight
parameters and b is a bias factor (they are to be learned from
the training set), and 〈·, ·〉 is the inner product. To avoid the
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Fig. 10. Snapshot examples: different occupancy patterns lead to different snapshots. Upper figures show the occupancy patterns, with yellow squares represent
the sensing units and blue human-shaped marks indicate occupants. Lower figures show the corresponding snapshots. (a) 12 occupants are all under sensing
units. (b) 12 occupants are all away from sensing units. (c) 8 occupants are all under sensing units. (d) 8 occupants are all away from sensing units. (e) 4
occupants are all under sensing units. (f) 4 occupants are all away from sensing units.

overfitting issue, we formulate the learning problem of w as a
regularized regression problem by introducing a regularization
term on w as follows,

w∗ = arg min
w

[
m∑
i=1

L(f(xi), yi) + γ‖w‖22

]
, (1)

where L(·) is a loss function and γ ≥ 0 is a tradeoff parameter
controlling the relative weight between the loss function and
the regularization penalty ‖w‖22. Different definitions of the
loss function lead to specific regularized regression methods;
here we adopt ε-insensitive loss that is described by

L(f(x), y) =

{
0 if |f(x)− y| ≤ ε,

|f(x)− y| − ε, otherwise.

This leads to the well-known as Support Vector Regression
(SVR) [27]. However, the function f(x) learned by solving
(1) can only capture the linear relationship between {xi}’s
and {yi}’s, whereas the intrinsic relationship between snap-
shots and the corresponding occupancy counts can be highly
nonlinear. To this end, we further formulate the learning
problem of w as a nonlinear regularized regression problem
by introducing a nonlinear feature map φ(x) that maps x to
a Reproducing Kernel Hilbert Space (RKHS),

f∗(x) = arg min
f

[
m∑
i=1

L(f(xi), yi) + γ‖f‖2H

]
, (2)

where ‖ · ‖H is the norm in the RKHS. By using the kernel
trick, i.e., K(xi,xj) = 〈φ(xi), φ(xj)〉, we can obtain the
minimizer of the optimization (2):

f∗(x) =

m∑
i=1

uiK(xi,x) + b, (3)

where ui is obtained by solving the dual problem of (2)
with the ε-insensitive loss [27]. Our design now focuses
on choosing a proper kernel function K(xi,xj) and pre-
processing {xi}’s so as to improve the inference performance.

C. Handling Spatial-Temporal Correlations

In order to achieve an accurate inference, we fine-tune the
regression by taking into account three types of correlations
among the training snapshots. As shown in Section III-A,
snapshots with similar labels are correlated, while the individ-
ual sensing values (collected by sensing units geographically
distributed in a monitoring area) have spatial correlations.
Moreover, the snapshots taken at consecutive time slots can
be correlated depending on whether some occupants move or
not.

The correlations among snapshots are handled by applying
a Gaussian kernel K(xi,xj) = e−ν‖xi−xj‖2 with ν > 0. Such
a kernel aims to bring down the interferences between two
rather “dissimilar” snapshots during the training process. The
spatial correlation among sensing values can be handled by
pre-processing the training data through the Geographically
Weighted Regression (GWR), where each snapshot x is mul-
tiplied by a symmetric matrix W :

W (k, `) =

{
e−µ(dk`/h)

2

if dk` < h

0 otherwise
, (4)

where dk` denotes the Euclidean distance between the k-th
and `-th sensing units and the “bandwidth” h is set according
to the FoV of our sensing units.

The aforementioned approaches may work well when oc-
cupant are static. When occupants are moving, the individual
snapshots can be rather unstable. Nevertheless, the occupant
motion also provide more information, e.g., variance among
two consecutive snapshots. Intuitively, minor temporal vari-
ances in the snapshots often indicate unchanged occupancy,
while major ones may indicate otherwise. To take the advan-
tage of this increased information dimension, we expand every
snapshot xi by further involving its variance with respect to
the previous snapshot, so the new snapshot has the form of
[xi,xi − xi−1] ∈ R2n.
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Fig. 11. CeilingSee testbed overview. Sixteen sensing units are deployed on
the ceiling covering a 5m×6m indoor area.

D. Incremental Inference

Due to dynamics of a real-world environment, the learning-
based system set up using training data pre-collected offline
may be out-of-date, and thus perform poorly online. To adapt
the system to environmental dynamics, a few training data
need to be collected online periodically (normally every week).
We also implement an incremental or online algorithm to
update the trained SVR model whenever a new training sample
is collected in real time [28], which entails a very efficient
adaptation to a dynamic environment without the need for
retraining from scratch.

IV. SYSTEM EVALUATION

In this section, we evaluate the performance of CeilingSee
in terms of inference accuracy, latency and power consumption
through extensive field experiments.

A. Experimental Setup

We deploy a CeilingSee testbed in one of our university
laboratories; it covers an area of 5m×6m. The testbed consists
of 16 LED lighting/sensing units mounted on the ceiling with
a height of 2.5m above the floor as shown in Fig. 11(a). We
try to deploy the units in 1.25m×1.25m grid, but we have to
slightly adjust the positions of some units adapting to the office
layout. As briefly presented in Section II-B, each sensing unit
includes a 8×12 LED chips array and a re-designed driver. We
connect all drivers to a Lenovo ThinkPad laptop computer via
serial port, so the laptop acts as a lightweight server processing
the sensing data to produce occupancy inferences.

The MCU of our driver, CC2541, is a low-cost power-
optimized system-on-chip module, running on up to 32MHz
and supporting 12-bit analog-to-digital conversions [29]. Most
importantly, CC2541 is designed for Bluetooth Low Energy
(BLE). Therefore, although we currently use serial port to
connect sensor units to the server, we plan to make CeilingSee
a full wireless system by using TI’s BLE-STACK [30] to
upload sensing data. In our testbed, we run the MCU at 16MHz
and let its ADC samples at 500Hz, and the low-pass filter
discussed in Section II-B1 is performed by the MCU so that
the snapshots are uploaded to the server only at 10Hz, given
the low variation rate of the reflection.

This testbed has been running for about 6 months, during
which we have kept monitoring the regular occupancy of the

deployment site, and we have also invited groups with up to
20 volunteers to perform specific experiments on the system.
All the experiments are performed based on two occupancy
patterns: i) static pattern where occupants stand or sit at
arbitrary locations, and 2) dynamic pattern where all occupants
walk or even run freely in the lab. For each pattern, the
number of occupants varies from 1 to 20, and we encourage
the occupants to change their postures between standing and
sitting, as well as to perform other daily activities during the
tests. We gather more than 10,000 snapshots for each pattern;
they are all labeled manually.

B. Impact of Sensor Density and Training Intensity

Before evaluating the performance of CeilingSee, we firstly
experimentally study the two design parameters of CeilingSee,
namely how dense the sensing units should be deployed and
how much training is needed. For the first aspect, we select 4
(i.e. unit 6, 8, 14 and 12), 8 (i.e. unit 3, 6, 8, 9, 11, 12, 14 and
16 ), and 12 (i.e. unit 2, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15 and
16) readings out of each snapshot to derive new snapshots,
so that we can evaluate the impact of sensor density. For the
second aspect, we take a substantial fraction of the labeled
data as testing data while using the remaining fraction for
the training purpose. We vary the Test to Total Ratio (TTR)
from 90% to 99%, where TTR indicates the fraction of data
chosen for testing the regression model. To better understand
the accuracy performance, we introduce a new accuracy metric
that allows for a certain number of miscounts indicated by a
non-negative integer τ . In particular, we define accuracy with
miscount tolerance as

(∑c
i=1 I|f∗(xi)−yi|≤τ

)
/c, where I is

the indicator function and c is the cardinality..
Fig. 12 shows the impact of the number of sensing units.

While 8 units appear to already offer very good accuracy for
static pattern, 12 units perform the best in both cases and
they would be necessary to cope with dynamic situations.
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(d) Dynamic pattern, τ = 1.

Fig. 12. Accuracy vs. varying number of sensing units with τ = 1.



Denser deployments beyond 12 units are clearly not beneficial,
because it yields a higher dimension of sensed data and
complicates the training procedure of the inference model.
Fig. 12 further shows the statistics given τ = 1. The relatively
low accuracy for dynamic pattern with τ = 0 is mostly due
to a single miscount, as raising τ to 1 would allow even
4 units to almost always achieve an accuracy beyond 90%
under both patterns, although the better performance of static
pattern and the superiority of 12 units still remain. We will
continue observing the performance difference between these
two patterns, which shall be further explained in Section IV-D.
To get the highest accuracy, we will keep using 12 units for
the remaining experiments.

Fig. 13 evaluates the impact of training intensity by varying
TTR from 90% to 99%. As expected, the higher the TTR
(hence less training), the worse the performance (in terms
of the mean and variance) is, but the performance degrades
in a rather graceful manner. In fact, if one miscount can be
tolerated, only 2% training data would be needed for static
pattern and 5% for dynamic one. Given our abundant training
data, we stick to 90% TTR for the remaining experiments to
obtain the best performance.

C. Breakdown of Inference Accuracy

We now study the occupancy inference accuracy with re-
spect to varying occupancy counts; the statistics are reported
for both static and dynamic patterns in Fig. 14. We observe that
the accuracy based on static pattern is always higher than 97%
for all occupancy counts, and tolerating one miscount brings
almost all of them to 100%. Though the accuracy for dynamic
pattern appears to be rather disappointing, the majority of the
miscounting cases involve only one miscount, because setting
τ = 1 causes drastic improvements to all occupancy counts.

Under static pattern, the inference accuracy is relatively
stable with various occupancy counts, while it is generally
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Fig. 13. Accuracy with varying TTR given τ = 0 and τ = 1.
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Fig. 14. Accuracy with varying number of occupants.

degrading as the occupancy count increases for both τ = 0
and τ = 1 under dynamic pattern. This can be largely
attributed to the drastic increase in transient states when more
occupants are constantly moving, as we shall elaborate in
Section IV-D. All in all, if we simply allow one miscount, the
inference accuracy based on both static and dynamic pattern
can be maintained above 90% for all tested occupancy counts.
Therefore, CeilingSee achieves a very promising inference
accuracy by using only existing lighting infrastructure. We
refrain from comparing CeilingSee with existing proposals at
the system level, because, on one hand, it is unfair as they are
based on very different technologies, and on the other hand,
CeilingSee is not meant to replace other systems, but rather
acts as a lightweight complementary solution.

D. Responsiveness and Real Life Scenarios

As CeilingSee may serve as input to indoor energy man-
agement systems (e.g., for HVAC), its responsiveness is a
concern and hence entails the need for evaluating how quickly
CeilingSee can respond to changes in occupancy count. Ceil-
ingSee’s sensing units configure their sample rates of ADC
as 500Hz. A moving average filter in the MCU processes
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Fig. 15. Dynamic response of CeilingSee.
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Fig. 16. A real life monitoring scenario for one day.

the output of ADC and produces snapshots at 10Hz, which
causes a 100ms delay. The transmissions of snapshots to
the CeilingSee’s server via serial port are done at a baud
rate of 115,200, consuming less than 1ms. The server takes
less than 1ms on average to figure out the occupancy counts
by operating our regression algorithm. Therefore, inference
latency is about 100ms in total which is mainly consumed
by sampling and preliminary data processing on MCU. We
could further reduce this delay by running the filter with a
smaller window size, but it does not appear to be necessary,
because the variations in LED readings take a much slower
pace (in seconds), as shown by Fig. 15(a) when an occupant
passes by 4 units and stops at the last. In fact, the current high
level of responsiveness is one of the main reasons that cause
miscounts under dynamic pattern. As shown in Fig. 15(b),
the occupancy counts reported by CeilingSee may oscillate
between two actual count changes if occupants keep moving.
This causes miscounts as shown earlier, but it is the price the
system has to pay for instantaneously detecting count changes.

In order to put the performance of CeilingSee into a prac-
tical perspective, we choose to report a whole day monitoring
data (for 18 February, 2016) among several-month operation
of the system. In Fig. 16(a), we plot the inferred occupancy
count (without ground truth) from 9am to 22pm. The reported
data exhibit a rather plausible pattern: occupants start to arrive
in the early morning, they leave for lunch during the noon
but come back after lunch; more occupants show up in the
afternoon, but most of them leave around 6pm, leaving only a
few working till late evening. Between two occupancy count
changes, the actual daily activity pattern is a mixture of both
static and dynamic patterns: it can be rather stable while most
of the occupants are sitting (presumably working), while it
fluctuates from time to time due to the activities such as taking
a short break, mingling with other colleagues, and so on.

We also arbitrarily choose three sensing units, unit 8, 10, 16,

to plot their readings in Fig. 16(b). The trends of these readings
are consistent with that of occupancy count. In particular, sen-
sor readings vary only slightly when there are less occupants in
the morning, lunch time and off work time, whereas it changes
more actively when there are relatively more occupants in
the afternoon (as the chance of they being moving becomes
higher). If we further look into these readings, for example
those around 14:00 and 15:00, fluctuations are so intense
that the sampled snapshots can vary rapidly. The resulting
large variations in snapshots reduce the effectiveness of re-
gression and hence the inference accuracy. This explains why
CeilingSee performs less accurately under dynamic pattern
as reported in Section IV-B and IV-C. Fortunately, as we
have shown, the miscounts caused by such fluctuations are
largely negligible. We could apply Hidden Markov Models
(HMMs) [31] to maintain the temporal consistency of occu-
pancy count so as to improve the inference accuracy under
dynamic pattern. Nevertheless, it would certainly retard the
response of CeilingSee to count actual changes.

E. Energy Consumption

Since CeilingSee utilizes existing lighting infrastructure as
light sources, we do not count in the energy consumption
for illumination. Consequently, the energy consumption of
CeilingSee mainly involves the energy consumed by the driver
circuits and microcontrollers of the LED sensing units. The
driver circuit of one sensing unit works at a DC voltage of
± 5V. It consumes 10.1mW when it works in the sensing
state, and at most 50mW when working in illuminating state.
The energy consumption of the MCU is 24mW. Therefore, the
total energy consumption is 34.1mW for a typical CeilingSee
sensing unit under its sensing state. As MCUs and drivers are
default components in general LED illumination devices, the
extra power consumption of our CeilingSee sensing unit is
only 10.1mW. This extra power consumption is incurred by
the amplifier circuits on re-designed driver. Moreover, since
data transmission of sensed data can also be integrated into
VLC or Power Line Communication (PLC) [32], the power
consumption for data transmission can be neglected. The
energy consumption caused by computations on the laptop
can also be ignored given that the laptop is working on
many other tasks at the same time. In summary, CeilingSee
is energy efficient for occupancy inference. We list the power
consumptions in Table III.

TABLE III
ENERGY CONSUMPTION OF ONE SENSING UNIT.

Sensing Sensing & illuminating
Driver 10.1mW 50.0mW
MCU 24.0mW 24.1mW
Total 34.1mW 74.1mW

V. CONCLUSIONS

In this paper, to efficiently estimate indoor occupancy, we
have developed a device-free system, CeilingSee, that pig-
gybacks on existing LED lighting infrastructure. The system



consists of two main components: 1) a re-designed LED
driver, which leverages LED’s photoelectric effect to transform
a light emitter to a light sensor, so as to obtain variances
in ambient reflection in the form of snapshots in any time,
and 2) a machine-learning-based algorithm to infer indoor
occupancy using the snapshots as input in real time. To verify
the efficiency and effectiveness of the developed system, we
have conducted extensive experiments in a testbed covering a
30m2 laboratory area. The experiment results have shown very
promising performance of CeilingSee and hence demonstrated
its great potentials to be applied to many smart building
applications. In our future work, we plan to further improve
the performance of CeilingSee, to develop various intelligent
systems that provide personalized services or security moni-
toring on top of this system, as well as to extend its application
to outdoor environments.
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